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Development of an electromyography sensor
wristband for controlling a prosthetic hand in

virtual reality
Peter Rott , B. Eng.

Abstract—Surface electromyography (sEMG) is a non-invasive
method of measuring electrical activity caused by muscle contrac-
tion. sEMG signals have been progressively utilized in a variety
of applications in recent years, including rehabilitation, pattern
identification and control of prosthetic devices.

The present work describes the development process of a
flexible EMG wristband which is capable of acquiring six EMG
sensor signals to control a virtual prosthetic hand in real time.
The development process includes the design of the wristband,
data acquisition, data processing and the implementation of two
machine learning algorithms to classify four defined hand ges-
tures. Furthermore, this study investigates whether the classifiers
achieve the same classification accuracy with an averaged value
of the EMG sensor signals compared to six EMG sensor signals
as input.

A diverse group of five participants took part in the study
to gain a train dataset, performing a series of predefined hand
gestures while wearing the wristband. The implemented classi-
fiers, an artificial neural network (ANN) and a support vector
machine (SVM) can classify defined hand gestures, where the
average classification accuracy of the ANN when using individual
sensor signals is 0.97, while it decreases to 0.76 when using the
average signal of all sensors. The accuracy results for the SVM
are 0.97 for the individual signals and 0.77 for the average signal.
Ultimately, an ANN is selected for the real time implementation
because it performs better with random test data by an average
of 0.02. With the real time implementation, the EMG wristband
achieved an average accuracy of 0.90 and an average delay time
of 6.29 ms. In the end, a hand prosthesis can be controlled in
a virtual environment with the predicted data from the EMG
wristband.

In summary, the results show that in the context of the
comparison, the average value of all EMG sensors leads to poorer
performance. Ultimately, the developed system can classify the
defined hand gestures in real time and provides a basis for further
studies with larger samples or for statistical analyses to explore
optimal sensor configurations and to improve the accuracy of
hand gesture classification systems.

Index Terms—Surface electromyography (sEMG), Hand ges-
ture recognition, Machine learning, Wearable EMG armband

I. INTRODUCTION

THE development of wearable devices has made signifi-
cant progress in recent years, with global use of wearable

devices expected to increase at a compound annual growth
rate of 38% between 2017 and 2025 [1]. In general, the
design of wearable systems is based on the incorporation of
smart sensors, artificial intelligence (AI), the Internet of Things
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(IoT), and Big Data, making it possible to obtain information
of interest from the human body [2].

Hand Gesture Recognition (HGR) is a key aspect of Human-
Computer Interaction (HCI), which is an investigation of com-
puter technology developed to understand human commands.
HGR models are human-computer systems which can identify
which gestures were executed and when they were carried out
[3]. This not only offers advantages for amputees in controlling
smart prostheses [4], but also finds application in other areas
such as language recognition [5], rehabilitation devices [6],
and device control [7]. An important measure for these HGR
models are the action potentials produced by the muscle
contraction for the hand movement. These muscle signals
can be recorded using non-inverse surface electromyography
(sEMG) sensors. sEMG sensors detect the electrical signals
representing the sum of subcutaneous motor action potentials
generated through muscular contraction and are non-stationary
[8]. A further advantage of these sensors is that they do not
have to be placed directly on the hand to record the purpose
of the hand movement. This suggests that these sensors can
also be used with amputees who are unable to perform hand
movements but would like to [9]. To detect these intended hand
gestures several Machine Learning (ML) algorithms are used,
such as support vector machines, linear discriminant analysis,
and neural networks [3].

This thesis aims to develop a sEMG sensor wristband to
control a prosthetic hand in virtual reality. The wristband
is designed to capture signals from the forearm muscles of
the user with six sEMG sensors. Afterwards, the EMG data
is transmitted to the computer via a microcontroller. On the
computer it is further processed to extract features that are
relevant for gesture classification. In the end, the virtual
hand prosthesis is controlled by classifying the EMG data
received from the wristband. A second thesis deals with the
development of a hand model in a virtual environment and
the classification of hand gestures using a camera tracking
algorithm. The overall goal is to design a training tool to
implement new hand gestures into the wristband. The camera
tracking algorithm provides the right labels for various hand
gestures. These labels are then synchronized with wristband
data, allowing the user to practice new hand movements for
the prosthesis. The second goal is to provide the user with
a virtual setup in which they may learn to control the hand
prosthesis without wearing it.

First, already developed EMG wristbands are listed and
described in their characteristics. Afterwards, the used ma-
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terials and implemented methods are explained, starting with
the EMG signal acquisition, which is influenced by muscle
contraction, signal noise and placement of the sensors [10],
[11]. Furthermore, signal processing, feature extraction, the
two common ML approaches, an artificial neural network
(ANN) and a support vector machine (SVM), and the modeling
of the wristband’s 3D printed parts are explained in more
detail. In the end, the EMG wristband is validated and tested.
Therefore the EMG data of five healthy participants are
recorded to train and compare the performance of the ANN
and the SVM. In the study, participants are asked to perform
four defined hand gestures: fist, pinch, thumb up and spread.
The aim of the study is on the one hand to determine whether
the precise positioning of the wristband in relation to the
classification is irrelevant by averaging the sensor values. On
the other hand, recorded datasets are used to test the robustness
of the ML algorithms and to identify which approach is better
suited for a real time implementation. Before the system is
implemented in real time, it is first trained and tested with
datasets that are not classified in real time. To evaluate the
system, various confusion matrices and classification reports
are created. Finally, the wristband is tested in real time with
a HoloLens interface to control a virtual prosthesis and to
provide better labeling for new data.

The results of this work should help in prosthetic hands
adaptation and allow users to train user-specific gestures into
the hand prosthesis. The development of an EMG sensing
wristband provides a user-friendly and non-invasive approach
to prosthetic hand control, allowing for more intuitive and
natural movements in virtual environments and in real life.

All used codes in this paper can be accessed through the
git repository https://github.com/PeterR96/EMG wristband
to- control virtual hand prosthesis

A. State of the art

In 2015, Thalmic Labs introduced the Myo wristband, an
innovative sEMG capture method designed for consumers.
Retail prices for this eight-channel Bluetooth connected wrist-
band were significantly lower than medical recording systems
(˜$200 USD). The wristband does not require a recording
site to be set up and is non-intrusive. However, to achieve
this, compromises were made in both data quality and signal
bandwidth. For example, the wristband has only eight channels
and a limited sampling rate of 200 Hz. It can distinguish
between four various hand motions (fist, spread hand, folding
the hand to the left and right), and it can also evaluate the
wristband’s position in space. Unfortunately, it is currently
discontinued [12].

The recently announced gForcePro+ EMG armband has an
elastic wristband, Bluetooth BLE4.2, an eight-channel high-
sensitive EMG, and 9-Axis motion sensors. Users can obtain
unprocessed EMG data. Up to 16 user-defined gestures and
the mobile gForceAPP gesture training platform are supported.
There are two modes available: 8-bit mode up to a maximum
frequency of 1000 Hz and 12-bit mode up to 500 Hz. As
an additional feature the armband has a feedback vibration
function integrated [13]. However, these named features made

the gForce-Pro six times more expensive (˜$1200 USD) than
the Myo wristband for the same number of channels and
recording resolution [8].

Mahmoud Tavakoli presented in [14] a simple band with a
sampling frequency of 1000 Hz that only utilized two sensors
to recognize five movements. So far, the amount of gestures
considered reduces the applicability of the wristband. Also, the
best location for the sensors differs depending on the subject,
leading to significant variations in the results. Even though
the system only has two channels, it is difficult to apply in
real-world situations since the design is too bulky and does
not function wirelessly [8].

Another sEMG armband [8], called the 3DC Armband was
developed by the Biomedical Microsystems Laboratory at
Laval University, which has 10 channels and a 9-axis inertial
unit. In addition, it has a sampling frequency of 1000 Hz with
a 10-bit Analog Digital Converter (ADC) and a weight of
63 g. Furthermore, each sensor module of the device has a
height of 3.7 cm and a thickness of 1.6 cm. The total costs
are approximately $150 USD. Due to the suggested connection
parts for the sensor boxes and the complexity of the sensors
employed, this device has a very complicated system and
a non-standardized production process. However, they offer
good capturing attributes, but the reproducibility is restricted
by the complexity of the system [15].

Recently, the Medical Robotics and Bio signal Processing
Laboratory [15] produced the WyoFlex band. It consists of
four sEMG sensors with sampling frequencies of up to 1600
Hz. Using a graphical user interface created in Node-RED, the
gathered sEMG data may be displayed and saved for further
post-processing steps. The armband can recognize four hand
motions and costs roughly $250 USD.

Table I presents the most relevant works in the literate as
well as the two commercial sEMG armbands and summarize
their characteristics. Furthermore several studies have been
performed to analyse and classify EMG data. The signal is
typically band pass filtered, with studies using a range of cutoff
frequencies, including 10-500 Hz [15], 15-200 Hz [16] or 20-
500 Hz [8], [17], [18].

ML is a method that can be applied to address the problem
of EMG-based hand gesture classification. The most important
classifiers for recognizing hand gestures are Support Vector
Machines (SVM) [19], Artificial Neural Networks (ANN)
[20], Convolutional Neural Networks (CNN) [21], k-Nearest
Neighbors (kNN) [22] Random Forest (RF) [23] and Dynamic
Time Warping (DTW) [24].

The following domains describe the typical characteris-
tics used for hand gesture recognition: time, frequency and
time-frequency [20]. Hand gesture identification is generally
determined by features collected from these domains. Most
frequently used features in the literature are waveform length
(WL) [19], EMG spectrograms [22], root mean square (RMS)
[23], mean absolute value (MAV) , slope sign change (SSC)
[8], short-time energy and the zero-crossing rate [25]. Data
windows usually are applied to the data and used to extract
the features. However, different lengths have been used for
the window, including 100 ms [25], 150ms [19], 200 ms [26]
and 250 ms [8], [16]. According to studies which compared
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TABLE I: Characteristics of the presented EMG armbands

Myo wristband gForcePro+ Double channel
EMG armband 3DC armband WyoFlex armband

EMG
sensors 8 8 2 10 4

IMUs 9 9 x 9 x

Sample rate 200 Hz 500/1000 Hz 1000 Hz 1000 Hz 1600 Hz

BLE/WIFI BLE 4.0 BLE 4.1 x 2.4 GHz low power custom
protocol (similar to BLE) WIFI

Gesture
recognition 4 16 5 11 6

Price was ∼$200 ∼$1200 NI ∼$150 ∼$250

several time windows for real time classification, the latency
should be kept within 100-250 ms, but the classifier’s perfor-
mance should take priority above speed [27], [28]. To further
improve classification performance, several publications use
strategies such as normalized EMG data [23] and offering a
transfer learning scheme [29]. Most studies undertake real-
time classification of EMG signals [30], [19], [20], [24], [29].
There are, however, self-developed EMG armbands that use
non-real-time classification [8], [14], [25].

II. METHODS

A. Materials

Six Gravity Analog EMG sensors [31] are used to cap-
ture muscle activity on the forearm. The sensors consist of
two main parts, the dry electrode board (sensor) and signal
transmitter board (controller). This setup allows EMG signals
to be obtained non-invasively. The analog output voltage
varies between 0 and 3 V, with a reference voltage of 1.5
V. The intensity of the signal is determined by muscular
activity. The output signal waveform represents muscle activity
and aids in the analysis and investigation of EMG data. As
data transmitting unit a NodeMCU ESP32 microcontroller is
used. The microcontroller is a Joy-it development and allows
communication by both WiFi or Bluetooth with a frequency
of 2.4 GHz. It requires minimal energy and is compatible with
Arduino IDE, the operating voltage is at 3.3 V (or operable via
5 V-microUSB). The ESP32 is linked to a computer through
a USB cable to deliver the required 3.3 V to the sensors and
establishes a serial connection to record data. Furthermore, the
ESP32 includes a built-in 12bit ADC converter for digitally
displaying the recorded data. All black cables of the EMG
sensors are soldered together and connected to the ground
pin of the ESP32. The same process is done with the red
cables, these are attached to the 3.3 V pin. The EMG signals
are transmitted via the blue cables of the sensors, which are
connected to pins D32, D33, D34, D35, D36 and D39.

The manufacturing method used for the wristband is 3D
printing. Here, the Creality Ender 5 Pro printer is used for
all parts of the wristband; a case for the EMG sensor and
controller, a cover for the ESP32, and two parts to attach a
rubber band to the sensor case. All parts are printed out of PLA
with the following printer settings: printer speed: 80 mm/s,
filling density of 20%, printer nozzle temperature of 210° and

bed temperature of 60°. The design of the the cases for the
sensor and the controller unit as well as the case for the ESP32
is given in Figure 1.

(a)

(b)

Fig. 1: (a) 3D printed case for the EMG sensor and the
controller (b) Case for the ESP32

B. Data acquisition

To record relevant data for hand gesture recognition with
the EMG wristband, the user has to wear it at the forearm as
shown in Figure 2.

Fig. 2: Position of the EMG wristband

It is important that the ESP32 housing always faces upwards
to ensure consistent recording conditions. Then a serial con-
nection with the ESP32 to a computer must be established.
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The ESP32 is printing all six EMG sensor values to the serial
monitor at a sample rate of 1000 Hz. To save all the data into
a .txt file a program called CoolTerm is used.

To train and validate the ML algorithms, it is necessary
to record data from different individuals. Ultimately, the train
dataset consists of data recordings of five healthy participants
(three females and two males) between the ages of 20 - 26.
Before the data collection is started, all participants signed an
informed consent form. All participants are asked to perform
the hand gestures fist, fingers spread, pinch and thumbs up
as well as the the rest position. They are asked to perform
each gesture 10 times in sequence with a hold duration of 5
sec followed by a rest position for 5 sec. In total, the dataset
consists of around 200 hand gestures plus the same number of
rest positions. During the execution of the hand movements,
the elbow is resting on a surface.

C. Signal Filtering

Figure 3 presents a flow chart of the data processing
steps. First step after data acquisition is the offset removal.
Afterwards, the EMG signals are filtered with a band pass
filter with cut off frequencies of 20 Hz and 450 Hz to reduce
unwanted signal noise. Furthermore a notch filter is applied to
eliminate the noise of the surrounding 50 Hz grid.

Fig. 3: Flowchart of the EMG data

Then the signals are rectified to obtain only positive signals.
Afterwards the signal is enveloped and additionally filtered
again with a low pass filter with a cut off frequency of 10 Hz
to create a graphed signal waveform. The result of the filtering
can be seen in Figure 4.

One objective of the work is to test whether classification
accuracy is affected when only an averaged value of all six
EMG sensors is used as input. Therefore, both the filtered
values of the individual EMG sensors and the averaged value
of all sensors are stored separately for each participant. The
following two steps, feature extraction and data labeling, are
also performed for both scenarios.

D. Feature Extraction

To extract the features, the filtered EMG signal is divided
into time segments. As presented in [3], [27], [28], the time
window should not exceed 300 ms to increase the classification
performance. For this reason the approach of a sliding time
window of 250 ms with an overlap of 50 ms is selected
for the feature extraction in non-real time. For the real-time
implementation a fixed time window of 250ms is defined.
Features in the time domain are most commonly used for
EMG pattern recognition, because they are usually easy to
implemented and don’t require high computational resources

(a) (b)

(c) (d)

Fig. 4: (a) Raw EMG Signal (b) Band pass filtered EMG
Signal (20-450 Hz) (c) Rectified EMG signal (d) Enveloped
EMG signal low pass filtered with 10 Hz

[32]. The extracted features are mean absolute value, zero
crossing, slope sign changes, wavelength, variance, integrated
EMG and the root mean square.

E. Data labeling

Since the used ML algorithms are based on the supervised
learning approach, data labelling is an essential step to train
them. For this purpose, it is important to distinguish the areas
of the signal where gesture execution has occurred from those
where the user does not execute a gesture. All gestures used
must be assigned with a specific label. These assignments
are 0, 1, 2, 3, 4 for rest, fist, pinch, thumb up and spared.
To determine the active gesture regions, two thresholds are
calculated. The average wavelength feature data serves as the
basis for calculation in both scenarios, individual sensor and
averaged sensor signals. Here, the average value AvgWL is
computed from the first eight time windows. The thresholds
are defined using Equation 1 and 2.

Thr1 = AvgWL · 1.85 (1)

Thr2 = AvgWL · 1.5 (2)

The first threshold (Eq.1) marks the start of the gesture
and the second (Eq.2) defines the end of a gesture. These
values were tested across all data sets and were found to be
appropriate to identify the execution region for all gestures.
However, in some cases, the thresholds still had to be improved
manually. Figure 5 shows the results of a random data set of a
thumb gesture. Detected gesture executions are marked by the
perpendicular lines. Threshold one is presented as a red line
and threshold two as a green one. To increase the accuracy
of the correct label assignment, two additional functions are
integrated to test whether there are deviations in the labeling
(e.g. Figure 5 at around window 200). Thereby it is checked
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if there is a 0 label between two gesture labels, if this is the
case the 0 label is replaced by the gesture label. In addition,
it is determined whether a gesture label exists between two
recognized 0 labels before and after the gesture label. In this
case the gesture label is replaced by a 0 label. After the labels
have been determined, the features with assigned labels are
automatically stored in a csv file.

Fig. 5: Estimation of the start and end points from a hand
gesture with the WL feature

F. Non-real time classification

For the classification of the EMG data, an ANN and a
SVM are implemented in Python first of all in non real. To
obtain the best possible performance of both ML methods, a
parameter study is conducted. The model parameters used for
the comparison are listed in Table II. This study is based on
the whole dataset of the five participants. The best parameters
are determined using the stratified five fold cross-validation
grid search process based on the work presented in [18]. This
means that the training dataset is randomly split into five
equal-sized parts. The classifier is trained using four subsets,
while the remaining subset is utilized for validation and accu-
racy evaluation. This method is performed five instances, with
each of the five subgroups utilised for validation exactly once.
Following that, the mean accuracy scores for five convolution
results are compared.

TABLE II: Parameters of the classifier study

ANN SVM

Hidden layers: 2, 3, 4 Kernel: rbf, linear

Neurons in each layer: 300, 600, 1000 C: 1,10,100,1000

Dropout rate: 0.2, 0.3 Gamma: 1, 0.1, 0.01, 0.001, 0.0001

After the best parameters are determined for each model,
both classifiers can be trained with them. For this purpose,
the dataset is split into 75% training data and 25% test data.
In the end, four models are saved and compared with each
other in respect to the classification accuracy.

G. Real time implementation

For the real time implementation an interface between the
ESP32 and Python must be established. The ESP32 calibrates

the EMG sensors once in the setup function, afterwards the
EMG data of all sensors are continuously sent to the python
script when its running. Here the data is stored and processed
in arrays of 250 values per sensor, this corresponds to a time
span of 250 ms at a sample rate of 1000 Hz. The data is
filtered with a band pass and a notch filter as described before.
Furthermore, the features are extracted and then normalized to
be classified by the ANN model loaded in the beginning. The
ANN model predicts the label for the given time window and
prints it to the console. Since it was not possible to implement
the sliding time window approach, the ANN model is retrained
with a time window segmentation of 250 ms. To evaluate the
real time system, ten sequences of ten randomly selected hand
movements are executed. Afterwards the results of the ANN
are compared with the desired outputs.

H. Integration in virtual reality (HoloLens)

The approach of data labeling by HoloLens is based on a
ML algorithm for hand gesture detection on the HoloLens. In
this algorithm, a label for the corresponding hand gesture is
generated every 250 ms. In the end, these labels are assigned
to the dataset which is recorded with the EMG wristband. The
approach should help to determine the definition of a move-
ment execution more precisely than the threshold approach. To
ensure synchronization of the predicted labels with the EMG
dataset, it is important to initiate the data recording of both
devices at the same time. Therefore it is necessary to send a
command from the HoloLens to the ESP32 when the EMG
data acquisition should start. To accomplish this, a server and
a local WiFi network is created on the ESP32. Before building
the network, the wristband is calibrated once in the setup
function. Then the ESP32 waits until the HoloLens logs into
the network and the data recording scene on the HoloLens is
started. With the start of the data recording a time stamp is
sent once to the ESP32 to be able to synchronize the datasets
in the later stage of processing. Finally, the accurately defined
start and end points of a hand movement by the HoloLens
can be assigned to the feature matrix. With the created data
set, a new ML algorithm may be trained. To control a virtual
prosthesis on the HoloLens, the predicted labels of the ANN
model are sent to the prosthesis control scene on the HoloLens
via a server in real time.

III. RESULTS

A. Non-real time implementation

The parameter study revealed that the parameters four
hidden layers, 300 neurons and a dropout rate of 0.2 lead to
the best accuracy of 0.97 for the ANN with individual sensor
signals. For the averaged EMG signals, only the dropout rate
changes to 0.3, but the model achieves only an accuracy of
0.76. For the SVM, a rbf kernel, C = 100 and gamma of 0.01
are the best parameters for the individual EMG data. With
these settings, the model achieves an accuracy of 0.97. For the
averaged EMG signals, C increased to 1000 and gamma to 0.1.
As with the ANN, the accuracy of the SVM drops to 0.77 in
this case. As a result, the difference in classification accuracy
for the train dataset between the two approaches are 0.21 for
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the ANN and 0.20 for the SVM. This demonstrates that the
averaged values are less suitable for the classification of hand
gestures. For this reason, only the individual EMG sensor data
are considered for further implementation. The average EMG
sensor data is only used to label the train datasets.

To define which classifier performs better with unlabeled
data and is in the end better suited for real time implemen-
tation, the ANN and the SVM are tested with ten random
hand gesture sequences from one participant. The accuracies
of the models are calculated for each test sequence and are
presented in Table III. There is also the average accuracy
rate determined. The ANN shows accuracies between 0.82
and 0.95 with an average accuracy of 0.88. The SVM, on the
other hand, provides accuracies between 0.77 and 0.95 with
an average accuracy of 0.86.

TABLE III: Classifier accuracies (acc) for each test sequence

1 2 3 4 5 6 7 8 9 10 Avg

ANN acc. 0.89 0.84 0.91 0.95 0.92 0.86 0.87 0.89 0.82 0.84 0.88

SVM acc. 0.86 0.77 0.90 0.95 0.90 0.88 0.88 0.89 0.84 0.78 0.86

Furthermore, the whole unlabeled dataset is classified by
each model. The overall results of the whole test sequence
dataset are shown in Figure 6 as confusion matrices and as
classification report in Table IV. The ANN model gains a
high precision of 0.89 for label 0, suggesting that 89% of
the cases predicted as label 0 are correct. It also has a perfect
recall of 1.00, which means that it correctly detects all cases
labelled as 0. Label 0 has an F1-score of 0.94, which is
an indicator of an overall good performance. For label 1,
the ANN model achieves a precision of 0.97, indicating a
high level of accuracy in identifying instances of this class.
However, the recall is 0.79, suggesting that some instances
labeled as 1 are not correctly identified. The F1-score for label
1 is 0.87, reflecting the balance between precision and recall.
The ANN model performs well for label 2, achieving high
precision (0.96) and recall (0.92). The F1-score for label 2 is
0.94, indicating good overall performance. Label 3 also shows
relatively good performance with a precision of 0.88, recall
of 0.86 and F1-score of 0.87. For label 4, the ANN model
achieves a precision of 0.95 and recall of 0.84, resulting in an
F1-score of 0.89.

The SVM model performs slightly worse than the ANN
model, with precision, recall and F1-scores between 0.67 and
1.00 for different labels. Overall, the ANN model obtains
an accuracy of 0.91, meaning that 91% of instances in the
test dataset are properly identified. The accuracy of the SVM
model is 0.89. The macro average scores for both models
represent the average performance over all labels, with the
ANN model outperforming the SVM model (precision: 0.93,
recall: 0.88, F1-score: 0.90). When the weighted average
scores are taken into account, the ANN model beats the SVM
model in all terms of accuracy (0.92 vs. 0.89), recall (0.91 vs.
0.89), and F1-score (0.91 vs. 0.89).

(a) (b)

Fig. 6: (a) Confusion matrix for ANN with whole test dataset
(b) Confusion matrix for SVM with whole test dataset

TABLE IV: Classification report for ANN and SVM tested
with test dataset

ANN SVM

Label Precision Recall F1-Score Precision Recall F1-Score Support

0 0.89 1.00 0.94 0.87 1.00 0.93 1356

1 0.97 0.79 0.87 0.95 0.67 0.79 504

2 0.96 0.92 0.94 0.96 0.88 0.92 297

3 0.88 0.86 0.87 0.91 0.83 0.87 416

4 0.95 0.84 0.89 0.84 0.86 0.85 437

Accuracy 0.91 0.89 3010

Macro avg 0.93 0.88 0.90 0.91 0.85 0.87 3010

Weighted avg 0.92 0.91 0.91 0.89 0.89 0.89 3010

All in all the results show, that the ANN has the better
average classification accuracy of 0.91 and 0.88 in both the
combined and the individually considered test datasets com-
pared to the SVM with 0.89 and 0.86, respectively. However,
it is feasible to conclude that both the ANN and SVM models
performed well in classifying the test dataset. Based on the
difference of 2% accuracy, the ANN model is used for the
real time implementation in the end. Other works such as [18],
[20], [24], [30], in addition showed that an ANN is the best
performing approach in real time classification.

B. Real time implementation

For the real time implementation the ANN model is trained
again with the participant data, the previous test sequence
data, and another dataset from the same participant of the
test sequences. Here, each gesture is performed 30 times to
gain a bigger and a more personalized dataset for the real-
time classification. After that, the ANN model is evaluated
with ten random hand gesture recording sequences in which
a real time classification is carried out. Figure 5.6 shows an
example of the tenth data recording sequence. The filtered
EMG signal and the assigned gesture labels as well as the
predicted labels of the ANN are displayed. Obviously, the most
frequent misclassifications occur at the end of a gesture.

The results of the training are given in the classification
report in Table V. It shows that the ANN model achieves
high precision, recall and F1 score across all labels, all values
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ranging from 0.94 to 0.99. The overall weighted average score
of 0.97 also reflects the very good performance of the model
on the given training and test set.

Fig. 7: Filtered EMG data (light blue), gesture labels (dark
blue) and the predicted labels (pink)

TABLE V: Classification report of ANN training for real time
classification

Real time performance off the ANN model

Label Precision Recall F1-Score Support

0 0.97 0.98 0.98 1567

1 0.97 0.94 0.95 399

2 0.94 0.98 0.96 416

3 0.97 0.95 0.96 388

4 0.99 0.95 0.97 404

Accuracy 0.97 3174

Macro avg 0.97 0.96 0.96 3174

Weighted avg 0.97 0.97 0.97 3174

TABLE VI: ANN accuracies and delay times for real time
classification

1 2 3 4 5 6 7 8 9 10 Avg

ANN acc. 0.92 0.93 0.88 0.89 0.93 0.89 0.90 0.95 0.85 0.87 0.90

Time delay [ms] 0.24 0.28 0.25 45.50 0.25 8.49 0.25 0.28 7.07 0.24 6.29

To determine the performance using real time data, ten
random motion sequences are again recorded, each consisting
of ten gestures. Additionally, the average delay time required
to process and classify the 6x250 sensor values is calculated.
Hence, it is the time taken by the program after acquiring the
250 EMG sensor signals until it can start acquiring again. The
results are listed in Table VI with the individual classification
accuracies and delay times. Furthermore, an average value of
the accuracies and the delay times is calculated at the end. The
performance accuracy of the ANN model ranges from 0.85 to
0.95 with a final average of 0.90, which is 7% lower than the
accuracy score of the training dataset. The delay times vary
from 0.24 ms to 45.50 ms with an average of 6.29 ms.

During the recordings it became obvious that the perfor-
mance of the model significantly depends on the correct

positioning, skin preparation and calibration of the EMG
wristband before the recording. When looking at the results
of test sequence ten in Figure 7, it becomes clear that the
inaccuracy of the classifier occurs mainly during a change of
motion. This could be caused by the fact that the training data
is not perfectly labeled by the threshold method.

C. Combination with the HoloLens

On the one hand, the connection with the HoloLens is
intended to improve and automate the EMG signal labeling
and on the other hand, to provide the possibility of controlling
a virtual hand prosthesis via the predicted labels of the ANN.
The result of the labeling approach by the HoloLens is shown
in Figure 8 (red line). It is obvious that the synchronization
of the data works, but the labeling is not yet very accurate.

Fig. 8: Filtered EMG data from a test sequence with assigned
labels from the HoloLens

The transfer of the predicted labels from the EMG wristband
to the HoloLens has been successfully implemented. The hand
prosthesis can now be controlled by the labels in an interval
of 250 ms in addition to the delay time of the program.

IV. CONCLUSION

In summary, the implemented system has achieved the
overall goal of real time classification. Data from six sEMG
sensors are sent via an ESP32 with a USB cable to a Python
program on the computer, where these are processed and
classified by an ANN in real time. The average accuracy of ten
test classifications is 90% with an average delay time of 6.29
ms for four defined hand gestures. For this purpose, the data
are first segmented into time windows of 250 ms and filtered
with a band pass filter (20-450 Hz) and a notch filter (50 Hz).
Then, the features MAV, ZC, SSC, WL, VAR, IEMG, and
RMS are extracted and normalized for each EMG sensor to
serve as input signal for the ANN. The ANN is selected based
on a performance comparison with a SVM in non-real time.
Furthermore, it has been demonstrated that an average value of
all sensor data is not sufficient to obtain comparable results to
the individual sensor values. In the end, a combination with a
HoloLens application is implemented and the EMG wristband
can be used to control a virtual hand prosthesis. Moreover,
it is possible to label datasets of the EMG wristband with
the HoloLens. However, this feature needs to be improved
since the results are not yet accurate enough to reliably train
an ML algorithm. The developed system provides a basis for
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further investigations with larger samples or statistical analy-
ses to explore optimal sensor configurations and to improve
the accuracy of hand gesture classification. Potential future
work packages could be the wireless connection of the EMG
wristband and a reduction of features. The second one could
be accompanied by a reduction of EMG sensors and related
costs. Additionally, an interface could be developed to better
control the connection and applications of the EMG armband
and the HoloLens.
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